
ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 8, August 2013

Copyright to IJARCCE www.ijarcce.com 3080

A Fault Tolerant Mechanism for Composition

of Web Services Using Subset Replacement

Shuchi Gupta
1
, Praveen Bhanodia

2

Student, Computer Science & Engineering, Patel College of Science & Technology, Indore, India
1

Assistant Professor, Computer Science & Engineering, Patel College of Science & Technology, RGPV Indore, India
2

Abstract: Businesses offer complex services to the users, which can’t be provided by a single Web Service. A Composite

Web Service provides more complicated function, by composing multiple Web services. A composite service is more

susceptible to failure than an atomic service. During the execution of a Composite Web Service, if one Component Service

fails or becomes unavailable, the whole Composite Web Service fails. A middle agent (broker) simplifies the interaction

between service providers and service requester and fulfills the user's need. The broker composes a desired value-added

service and orchestrates the execution of Web Services. A replacement policy has been proposed in this paper that replaces

the subset of Web Services that contains failed Web Service with another equivalent subset. During the execution, if a

failure occurs, subsets containing failed Web Service are identified. Subsequently the subsets equivalent to failed one are

identified. These equivalent subsets are ranked as per the policy and the best subset is selected. The old subset is replaced

with the new equivalent subset in the Composite Web Service.

Keywords: Web Services, Composition, Subset Replacement, Equivalent Services.

I. INTRODUCTION

 Service is a self-contained, stateless business

function which accepts one or more requests and returns one

or more responses through a well-defined, standard

interface. Web services are self-described software entities

which can be advertised, located, and used across the

Internet using a set of standards such as SOAP, WSDL, and

UDDI. Web services are based on Service Oriented

Architecture [1, 2].

The fundamental architecture of web services is shown in

figure 1.

Figure 1: Web Service architechtre

A service provider creates a web service along with its

definition, and then publishes the service with a UDDI. Once

a web service is published, a service consumer may find the

service via the UDDI interface. The UDDI registry provides

the service consumer with a WSDL service description and

URL pointing to the service itself. The service consumer

may then use this information to directly bind to the service

and invoke it.

 At present, large number of Web Service are

present on the World Wide Web. Most of these are designed

to serve a specific type of business functionality. Present

need of business enterprises are very huge in nature and

can’t be served by a single web service. Therefore,

composition of several web services to form a complex Web

service is required.

Service composition can be done either by identifying the

component services in advance i.e. at the design time called

Static Composition or identification at the run time called

Dynamic Composition [5]. Due to the highly dynamic nature

of the web, it is difficult to determine the atomic services

that will constitute the composition in advance. Therefore,

the composition of Web services should be done at run time,

dynamically.

Execution of a composite web service includes execution of

all bundled services. Thus, a composite service is more

susceptible to failure than an atomic service. During the

execution of a composite web service, if one component

service fails, or becomes unavailable the whole composite

web service fails. The business or service provider is not

able to send response to the service requester. Just because

of one service failure, the whole business process will not

respond. In such situation the whole composite service need

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 8, August 2013

Copyright to IJARCCE www.ijarcce.com 3081

to be run completely all over again. Therefore a mechanism

is needed to ensure that the running process is not

interrupted and the failed service is quickly and efficiently

replaced.

II. RELATED WORK

Now a day’s most of the service demands from the users are

answered through the web. In order to answer complex

demands, composite web services had to be constructed.

Senkul et al. have proposed a system that can compose web

services under the constraints on the overall composite

service as well as requirements on the atomic services [4].

On the basis of the constraints and acceptance levels, a set of

feasible plans are generated and ranked.

There are two kinds of Web service composition, static

service composition and dynamic service composition [5].

Static service composition is carried out when design or

loaded, so it is less flexible than dynamic service

composition, which is carried out when the application is

running. Ming et al. have raised a solution for dynamic web

service composition [6]. In this approach, user’s requirement

was broken down into a series of abstract web services. By

semantic matching between the abstract services and the

atomic, the executable web services composition is obtained.

Boumhamdi et al. have proposed architecture for dynamic

composition of Web services as per user’s requirements and

availability of resources [7]. This architecture also has the

ability to re-configure the composite service at runtime in

case of some failure.

Execution of a composite semantic web service includes

execution of all bundled services. So, a composite service is

more susceptible to failure than an atomic service. Yin et al.

have proposed a approach for service replacement in the

composite web service. The target service could be replaced

individually, or it could be replaced with its related services

in the composition as a whole by another complex service.

They have presented a mechanism to select the optimal

service for replacement based on QoS in two phases: (1)

Preliminary selection and (2) Ranking [8]. In this solution

approach the best QoS service is selected for the

replacement.

To address the requirements for reliable and fault tolerant

Web service interactions which intercepts the execution of

composite services and transparently provides recovery

services. He et al. proposed an infrastructure to implement

failure recovery capabilities in the Web Services

Management Systems [9]. By using this infrastructure

system is able to recover from the web service failure and

resulting in better reliability. Erradi et al. also propose a

policy driven middleware which intercepts the execution of

composite services and transparently provides recovery

services [10]. They define an extensible set of crucial

recovery policies (e.g., retry, skip, use equivalent service),

with a well-defined behavior, to declaratively specify the

handling and recovery from typical faults in service-centric

business processes.

Saboohi et al. have proposed a failure recovery method

using sub graph replacement of web services containing a

failed web service. This failure recovery method uses both

forward and backward mechanisms as followings: First, re-

execution of failed web service and second, execution of an

alternative sub graph of web services instead of a sequence

of services containing failed web service [11]. This method,

composite semantic web service is considered to be a simple

graph defined as S-Graph but proposed steps are of O(n2)

and it’s most time-consuming section is the calculation of all

sub graphs and finding their compatible alternatives.

Using a different approach, an exception resolving method

based on discovering replacement components that are

functionally equivalent is proposed by Christos et al. [12].

But this solution only replaces a single web service when a

failure happens. Vaculín et al. have proposed an approach

for specification of exception handling and recovery of

semantic web services based on OWL-S. They have used

standard fault handlers and compensation handler from WS-

BPEL. By combining fault handlers, Constraint Violation

handlers and standard event handlers they make possible to

recover from a composite web service failure [13].

Vieira et al. presented comparison of performance and

recovery in web services infrastructures in the presence of

faults [14]. The approach consist a set of faults that are

injected in the system and measures that characterize

baseline performance (without faults), performance in the

presence of faults and recovery time. Chen et al. have

presented a fault detection mechanism, which is based on the

queuing theory, to detect the services that fail to satisfy

performance requirements. They also give a reference

service model and reference architecture of fault-tolerance

control centre on our fault detection mechanism [15]. But it

is difficult to validate this mechanism.

H. Elfawal Mansour and T. Dillon et al. implemented a fault

tolerance mechanism for component web services through

rollback i.e. if there is any fault then the execution is sent

back to the previous state [16]. But this paper deals with

component failure.

Many papers were published during the last few years

related to composition and failure recovery in web services

after detail study of above papers it is concluded that many

strategies were proposed for monitoring and detecting failure

in web services but they did not emphasize on recovery.

Moreover, many static fault tolerance strategies had been

proposed in which recovery from a failure was predefined.

These static strategies are not feasible enough to be used in

highly dynamic web environment. In some fault tolerance

schemes, if a failure is detected in Composite Service then

the whole composite service is discarded and the whole

Composition process is done all over again, which increases

the response time. In some strategies, replacement of a

single web service has been done. But in general there is a

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 8, August 2013

Copyright to IJARCCE www.ijarcce.com 3082

need to replace a sequence of web services to recover from

failure in case of Composite Web Service.

III. PROPOSED SOLUTION

In this paper, a mechanism is presented for execution of a

complex web service in presence of fault. A middle agent

(broker) has been developed that simplifies the interaction of

service providers and service requester. The proposed agent

takes user’s functionality requirements of the desired

component services to be included in the complex service.

The agent matches the parameters and find out the web

services in UDDI as per user’s request, constitutes a desired

business process (composite web service) by composing the

searched web services and then prepares them for execution

of component web services in business process. During the

execution of a Composite Web Service, if one Component

Service fails or becomes unavailable, the whole Composite

Web Service fails.

Therefore a fault tolerance mechanism is to be proposed that

replaces set of web services in place of old set of web

services containing failed or unavailable web service.

During the execution, if a failure occurs, subsets containing

failed Web Service are identified. Subsequently the subsets

equivalent to failed one are identified. These equivalent

subsets are ranked as per the policy and the best subset is

selected. The old subset is replaced with the new equivalent

subset, to complete the execution.

The architecture of the proposed system is shown in Figure

2. In the proposed approach, the complex service is offered

to the users through a Broker. The proposed agent takes

user’s functional requirements of the desired component

services to be included in the complex service and readiness

to pay for the service. The user is then provided with a

complete complex web service.

Following components have been included in the system:

 Service Requester: This component represents the

actual user of the system for whom we are developing the

system. The service requester enters the functional

requirements of the desired component services to be

included in the complex service and readiness to pay for the

service.

 Service Provider: This component represents the

actual services which are requested by the service requester.

These services provide the main business functions.

Figure 5.2: System Architecture

 UDDI Registry: This component contains the

information of all the Web services. Then broker finds out

the component service providers using in the UDDI registry

to match those user’s requirements.

 Broker: The broker contains following

subcomponents.

 Web Service Finder: This component works as a

searching agent according to the requirement of the user’s

request. It searches the service providers in the UDDI

registry.

 Web Service Composer: This component

composes the web services according to the user’s

requirement. It takes input from the web service finder and

composes the component services and sends the result to

web service execution monitor.

 Web Service Execution Monitor: It monitors and

controls the execution of the services. If a service fails then

the execution monitor detects the service which has failed

and sends the information of the failed service to the

recovery manager. If no failure occurs then it sends the

result to the service requester.

 Web Service Recovery Manager: It find out the

alternative web services in the UDDI registry for the failed

web services and try to complete its execution by replacing

the failed services. If recovery manager can’t find a

matching service node to replace, then recovery manager

calculates all web service subsets in which failed services

appears. Then recovery manager finds out alternatives of this

web service subset and ranks them. Then select best subset

according to user requirements and send it to the web service

composer.

A. Fault Injection and Detection

In a computer system several faults can occur, artificial

faults can be injected, and errors can be observed. To

characterize a computer system in presence of faults, it is not

required that the injected faults are exactly equal to real

faults, it is sufficient that they cause similar behaviors

(errors). What is important is to have equivalence in the

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 8, August 2013

Copyright to IJARCCE www.ijarcce.com 3083

consequence of the fault and not in the fault itself. An

important aspect in fault injection is the fault trigger that

describes the conditions that make the fault to be exposed

(i.e., the event that leads to the injection of the fault). In the

presented method, we have decided to inject faults in

predefined instances in web services. We injected following

fault in the system:

 Software and development fault: - Many time

some code or variable are inserted during the development

of the system and these codes are still present even though

these are not required after the development and causes the

faults in the system. Faults which occur due to system

development or maintenance can be simulated through the

code modification and code insertion technique. To inject

faults in software, the part of the program is modified before

the program image is loaded and executed

 Network fault or connection loss: In this fault, the

connection between the application server and service

provider server is lost. To simulate this fault we can use the

timer and code insertion techniques. Using these techniques

we can write the disconnection code that will activate at

some fixed time after the execution starts.

 Operational fault: This is a kind of failure, when

the operation of a service fails and we don’t get the

appropriate result. To simulate this fault a false code in the

service operation or in the function is inserted. This faulty

code is triggered or executed on a faulty condition.

 Unexpected server crash: In this situation server

will automatically crash at run time due to functional or

hardware failure. To simulate this fault the timer technique

is used. In this technique after a fixed time interval, the

service provider’s server shuts down as written in the timer

function.

In order to handle fault or error occur in Web services,

exception handlers is to be implemented. These exception

handlers associated with the each Service execution activity

so that when an error occurs at that service, it terminates the

execution, and the corresponding recovery code is executed.

However, when an failure occur a signal show an exception,

execution is terminated as soon as one signaled exception is

caught, and only the handler for this specific exception is

executed.

Replacement policy: The system replaces failed subset and

executes the equivalent subset if and only if when the

equivalent subset fulfils all these rules mentioned below.

1. The web service subset must provide the same

functionality provided by the failed subset.

2. The web service subset must fallows the same user

constrains (target location, supply days) which fallows by

the failed web service subset.

3. The web service subset must have the equal cost to

the failed subset.

4. The web service subset that has highest Qos

parameter is selected to the replacement.

5. If already executed web services are present in the

failed subset then the system must cancel the order of

product by invoking cancel function of these web services.

B. Proposed Algorithms

In this section, the proposed algorithms are presented.

Algorithm to Identify Failed Subset

 This algorithm first calculate the set difference of

the composite set and the failed service then calculate the all

subset of Remaining service Set after that take the Union of

each subset with the failed service and stored in to the failed

subset.

Input: Composite service set (CSS), failed service

Output: Failed subsets (FS)

Step 1: First we have to calculate the set difference of the

composite set and the failed service.

 Remaining service set(RSS) = Composite service

set(CSS)- failed service

Step 2: Now we have to extract the all subsets of Remaining

service Set RSS = {a, b, c, …}

Step 3: Then, first we separate the first element from RSS.

 First-element like a then B = {b, c, …}.

Step 4: Now we use this recursion. The subsets of RES are

the collection of subsets of B, plus the collection of subsets

of B once again, but this time the first element a is added to

these subset:

 Subsets-Of (RSS) = Subsets-Of (B) + ({a} +

Subsets-Of (B))

Step:5 Now then we take the Union of each subset of RSS

with the failed service.

 Failed subsets = Each Subsets-Of (RSS) U failed

service

Algorithm to Identify Equivalent Subset

The Algorithm matches the functionality and constraints of

failed subset and new subset and if both are matches then we

stores this subset to the equivalent subset.

Input : newsubset[] // new subset

 constraints //failed subset constraints like product

name, supply days, supply location.

 newconstraints[] //list of new subset constraints

 F// list of the functionalities of failed subset

 NF[] // list of the functionalities of new set

Output : ES[] // list of equivalent subset

Step 1: For i= 1 to all newsubset which has to match

equivalent

Step 2: Match the functionality and constraints of the new

subset and failed subset

Step 3: IF functionality and constraints matches

 If(NF[i]= = F &&

newconstraints[i]==constraints)

Step 4: Then store the new subset into the equivalent sub set

list

 ES[j]==newsubset[i], j=j+1

Step 5: Else take the next new subset for matching

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 8, August 2013

Copyright to IJARCCE www.ijarcce.com 3084

 i=i+1

Step 6: Repet the Step2 to Step5 until all new subset are not

matched.

Algorithm for Alternative Subset Replacement

 This algorithm identifies the equivalent web service

and replaces them with the failed one. In this algorithm first

identify the equivalent web services to the failed subset

which have only one element if we find the equivalent one

then we replace that with the failed one. Otherwise it takes

failed subset which has two elements and finds out the

equivalent subset if we find the equivalent subset then we

replace that with the failed one. Otherwise repeat these step

until all failed subsets are not finished or failed subset

successfully replaced.

Input: FS failed subset in which failed service occur

 CSS Composite service set

Output: NCS new composite service

Step 1. i=1 //First take the failed Service

Step 2. While (all sub set are not finished or failed subset

successfully replaced)

Step 3. Select subset in which number of service=i

Step 4. Search for alternative service in juddi

Step 5. Make the possible subset

Step 6. Identify the equivalent subset

Step 7. If equivalent subset are not found

 then i=i+1

Step 8. Else

 Rank that equivalent subset based on cost and Qos

 Select best subset

 Replace failed subset to the equivalent subset (ES)

in composite service set

 Take the set difference (SD) of CSS and FS

 SD = CSS-FS

 Take the Union of the SD and ES

 New Composite Service (NCS) = SD U ES

Step 9. End of while

IV. CONCLUSION

In this project a fault tolerance mechanism to alleviate

failure of software systems consisting composite web

services is presented. This method is based on subset

replacement in a composite web service. The proposed

method enables the user to avail the complex service that

meet user’s requirements. Even in the case of failure of a

web service our method hides the failure by doing partial

composition, in which failed web service subset is replaced

by an equivalent subset with the failed one. QoS parameters

availability, response time, and throughput are considered to

determine the ranking of composite sets and equivalent

subsets.

 For validate this method we inject many fault in the

system and simulate with the real time fault. Software and

development fault, network fault, connection loss and server

crash fault are simulated by the code insertion, code

modification, timeout using timer fault injection technique.

If any fault occurs in the execution of a composite web

service then instead of composing entire service again only

the failed service set is replaced. By using our method whole

composition process is not required to be repeated and only

partial composition is done that improves the total response

time nearly by 50% as evident from the result. Also If a

service set fails during the execution, then the subsets are

identified at dynamically. The proposed method reduces the

number of subsets by half of total subsets. Thus to identify

these subsets our method takes, up to 70% lesser time than

the previous method.

 In nutshell, the proposed method significantly improves the

success rate and execution time in case of failures during

execution of a composite service.

 In future, other failure reasons in composite web

service can be incorporated in our method. This project

works only for the sequential web service composition. It

can also be extended to work on the parallel loop structure

and conditional composition of web services that require a

non-liner replacement algorithm.

REFERENCES
[1]W3C, “Web Services Architecture,” 2006;

http://www.w3.org/TR/2004/NOTE-ws-arch- 20040211/.

[2] Wang Qing-Ming, Tang Yong, Zhang Zan-Bo, “Research in

enterprise applications of dynamic web service composition
methods and models”, Second International Symposium on Electronic

Commerce and Security, IEEE,2009, pp146-150

[3] “WSDL and UDDI”, w3schools, Available at:
http://www.w3schools.com/wsdl/wsdl _uddi.asp.

[4] Pinar Senkul, “Composite Web Service Construction by Using a

Logical Formalism”, Preceding of 22nd International Conference on
Data Engineering Workshops (ICDEW'06), IEEE 2006, pp 56-65.

[5] Antonio Bucchiarone, Stefania Gnesi, “A Survey on Services

Composition Languages and Models”, International Workshop on Web
Services Modeling and Testing, WS-MaTe 2006, pp 51-63.

[6] Wang Qing-Ming, Tang Yong, Zhang Zan-Bo, “Research in Enterprise

Applications of Dynamic Web Service Composition Methods And
Models”, Preceding of Second International Symposium on Electronic

Commerce and Security, IEEE 2009, pp 146-150.

[7] Kaouthar Boumhamdi, Zahir Jarir, “Yet Another Approach for
Dynamic Web Service Composition”, International Conference

forInternet Technology and Secured Transactions, 2009. ICITST 2009.

[8] Keting Yin, Bo Zhou, Shuai Zhang, Bin Xu, Yixi Chen, “QoS-aware
Services Replacement of Web Service Composition” 2009 International

Conference on Information Technology and Computer Science pp271-

274.
[9] Weiping He, Virginia Tech, “Recovery in Web Service Applications”,

International Conference on e-Technology, e-Commerce and e-Service

(EEE’04), IEEE, 2004.
[10] Abdelkarim Erradi, Piyush Maheshwari, Vladimir Tosic, “Recovery

Policies for Enhancing Web Services Reliability”, International

Conference on Web Services (ICWS'06), IEEE, 2006.
[11] Hadi Saboohi, Amineh Amini, Hassan Abolhassani, “Failure Recovery

of Composite Semantic Web Services using Subgraph Replacement”

Proceedings of the International Conference on Computer and
Communication Engineering 2008 May 13-15, 2008 Kuala Lumpur,

Malaysia, pp489-493.

http://www.w3.org/TR/2004/NOTE-ws-arch-%20%2020040211/
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5393958
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5393958
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5393958
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5393958

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 8, August 2013

Copyright to IJARCCE www.ijarcce.com 3085

[12] K. Christos, V. Costas, G. Panayiotis, “Towards Dynamic,

Relevance-Driven Exception Resolution in Composite Web Services", 4th
Int. Workshop on SOA & Web Services

[13] Roman Vaculín, Kevin Wiesner, Katia Sycara, “Exception handling

and recovery of semantic web services”, Fourth International Conference on
Networking and Services, IEEE, 2008, pp217-222.

[14] Marco Vieira, Nuno Laranjeiro, “Comparing Web Services

Performance and Recovery in the Presence of Faults”, International
Conference on Web Services (ICWS 2007),IEEE,2007.

[15] Hao-Peng Chen, Cheng Zhang, “A Queueing-Theory-Based

Fault Detection Mechanism for SOA-Based Applications” The 9th IEEE
International Conference on E-Commerce Technology and The 4th IEEE

International Conference on Enterprise Computing, E-Commerce and E-

Services(CEC-EEE 2007),IEEE,2007.
[16] H. Elfawal Mansour and T. Dillon, Fellow, IEEE, “Dependability

and Rollback Recovery for Composite Web Services”, IEEE

TRANSACTIONS ON SERVICES COMPUTING, VOL. 4, NO. 4,
OCTOBER-DECEMBER 2011.

.

